Introduction aux microondes et antennes

Série 10

Problème1

Soit le champ électrique donné par

$$\mathbf{E}(t) = \mathbf{e}_{\mathbf{x}} \sqrt{2} \cos(\omega t) + \mathbf{e}_{\mathbf{y}} \sqrt{2} (\cos(\omega t) + \sin(\omega t))$$

- a) Trouver le vecteur phaseur équivalent
- b)Montrer que la polarisation est elliptique
- c) Décomposer E(t) en deux champs :
 - à polarisation linéaire et déphasés de 90°
 - à polarisation circulaire de sens opposé

Solution:

Soit le champ électrique donné par

$$\mathbf{E}(t) = \mathbf{e}_{\mathbf{x}} \sqrt{2} \cos(\omega t) + \mathbf{e}_{\mathbf{v}} \sqrt{2} (\cos(\omega t) + \sin(\omega t))$$

a) Trouver le vecteur phaseur équivalent

$$\mathbf{E} = \begin{pmatrix} 1 \\ 1 - j \\ 0 \end{pmatrix}$$

b)Montrer que la polarisation est elliptique

$$\mathbf{E} \cdot \mathbf{E} = 1 - 2j \neq 0$$

$$\mathbf{E} \times \mathbf{E}^* = \mathbf{e}_{\mathbf{z}} 2j \neq 0$$

⇒ polarisation elliptique

- c) Décomposer E(t) en deux champs :
 - à polarisation linéaire et déphasés de 90°

Il faut que

$$\mathbf{E} = \mathbf{E_1} + \mathbf{E_2}$$

avec le premier vecteur purement réel et le 2ème purement imaginaire. On obtient donc

$$\mathbf{E_1} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \text{ et } \mathbf{E_2} = \begin{pmatrix} 0 \\ -j \\ 0 \end{pmatrix}$$

Ce qui correspond à

$$E_1(t) = \sqrt{2} \left(\mathbf{e}_{\mathbf{x}} + \mathbf{e}_{\mathbf{y}} \right) \cos(\omega t)$$
$$E_2(t) = \sqrt{2} \left(\mathbf{e}_{\mathbf{y}} \right) \sin(\omega t)$$

qui sont bien déphasés de 90° et de polarisation linéaire.

- à polarisation circulaire de sens opposé

Il faut alors que

$$\mathbf{E} = \mathbf{E_1} + \mathbf{E_2}$$

avec le premier vecteur ayant une polarisation circulaire droite et le deuxième une polarisation circulaire gauche. On a donc :

$$\mathbf{E_1} = \alpha \begin{pmatrix} 1 \\ j \\ 0 \end{pmatrix} \text{ et } \mathbf{E_2} = \beta \begin{pmatrix} 1 \\ -j \\ 0 \end{pmatrix}$$

Il reste à déterminer α et β pour que la somme de ces deux champs donne le champ initial. On obtient $\alpha=1-j/2$ et $\beta=j/2$

Problème 2

Une antenne rayonne une puissance dont la densité est donnée par l'expression

$$p(r,\theta,\varphi) = \begin{cases} C \frac{\cos^n \theta}{r^2} & ; & 0 \le \theta \le \pi/2 \\ 0 & ; & \pi/2 \le \theta \le \pi \end{cases}$$
 [W/m²]

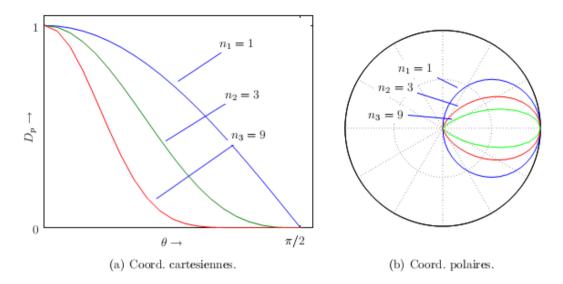
où C est une constante.

- 1) Esquisser l'évolution de la forme du diagramme de rayonnement avec l'exposant n.
- 2) Calculer la puissance rayonnée totale et la valeur moyenne de la densité de puissance (densité de puissance isotropique p_{iso}) sur une sphère de rayon r.
- 3) Trouver la valeur maximale de la directivité de l'antenne en fonction de l'exposant n.

Solution

Le diagramme de rayonnement en puissance est donné par

$$D_p(\theta, \varphi) = \begin{cases} \cos^n \theta & ; & 0 \le \theta \le \pi/2 \\ 0 & ; & \pi/2 \le \theta \le \pi \end{cases}$$



La puissance totale rayonnée P_{rad} est donnée par l'intégrale surfacique de la densité de puissance sur une sphère de rayon r entourant l'antenne:

$$P_{rad} = \iint_{S} p(r, \theta, \varphi) ds = \int_{0}^{2\pi} d\varphi \int_{0}^{\pi/2} C \frac{\cos^{n} \theta}{r^{2}} r^{2} \sin \theta d\theta = C \frac{2\pi}{n+1}$$

La densité de puissance rayonnée isotropique est donnée par

$$p_{iso} = \frac{P_{rad}}{4\pi r^2} = \frac{C}{2(n+1)r^2}$$

On obtient alors la directivité:

$$D(\theta) = \frac{p(\theta)}{p_{iso}} = \begin{cases} 2(n+1)\cos^n \theta , \ \theta \in [0, \pi/2] \\ 0, \ \theta \in [\pi/2, \pi] \end{cases}$$

Il est clair que la directivité est maximale pour θ =0, et est donnée par

$$D_{\max} = D(\theta = 0) = 2(n+1)$$